
Writing out the entire plan since the talk is a bit longer than usual.
1:15hrs
Outline:

- ZKVM
- zkVM architecture
- RISC Zero Terminology
- zkVM features
- Proof Stack - Full Perspective

- Prove RISC-V execution with STARK -->
- Prove recursion/aggregation with STARK -->
- Run groth16 circuit to make it small

- What’s possible with the zkVM - Demos
- showcase different projects built on zkVM

- Fibonacci walkthrough
- Chess walkthrough

- Bonsai
- Explain what it is

- Where to use it
- High level architecture
- What's possible with Bonsai

- showcase different projects built on Bonsai
- Bonsai Pay

- Architecture overview
- code walkthrough
- Demo

RISC Zero
ZK Hack IV Online

Get Rusty with RISC Zero: Build your ZK Rust Application

Brian Retford, CEO
Dr Iryna Tsimashenka, DevRel

Hans Martin, Solutions Engineer

Intro to RISC Zero

zkVM
architecture

terminology
features

proof system

Bonsai
what is it? why?

Bonsai Pay walk through

What will we cover?

quick start

Break 5-10 min

Introduction to R0

RISC Zero was started in 2021 and is focused on
revolutionizing the internet by creating the infrastructure
& tooling necessary for Web3 developers around the
globe to build zero-knowledge software. We are bringing
general-purpose computing to the zero-knowledge
ecosystem – enabling users to trust programs run
anywhere while allowing developers to use the tools they
already know and love.

RISC Zero zkVM

RISC-V ISA zk-STARKs
open-source instruction set

architecture based on the reduced
instruction set computer that uses

32 int registers

zero knowledge, scalable,
transparent argument of
knowledge cryptography

is based on two main components:

zkVM Architecture
Rust Code

RISC-V ELF
Binary

Executor Session Prover

Receipt

ZKVM

But, why is it important?
What can it do?

Developers can run Rust code through the zkVM and
prove the execution was done correctly.

The zkVM makes verifiable computation
easy to get started with

Q&A with Brian

Terminology

Guest: The program running inside the zkVM.

Host: The system the zkVM runs on.

Prover: Part of zkVM that generates a proof.

Guest Code

RISC-V ELF
Binary

Executor Session Prover

Receipt

ZKVMapplication that
gets proven

executable format
for the RISC-V
instruction set

Reasonable for
generating the

execution trace

Execution
trace of the

program

Validates and
proves a guest

program
constructing a

receipts

Attests to valid
execution of a
guest program

Host The system the
ZKVM runs on

Proving

ZK

Verifier

Forwards
receipt to
skeptics

Emulated guest,
sends private data

Returns to host as
proof of compute

Receipt

Guest

Executes code,
Commits results
to receipt

Host

Journal: The portion of the receipt that contains
the public outputs of a guest.

Receipt: A receipt attests to valid execution of a
guest program.

https://lu.ma/istanbullish

Seal: Hash of the proof that is passed for validation.

Receipt: Verification

The public
outputs of the
guest program

Cryptographic
zero-knowledge proof that
the journal is the output of the
program whose “hash”
is included in the seal

Receipt

SealJournal

Advanced:
Let's look under the hood

Advanced: What’s in a Receipt?
The seal of a RISC Zero zkVM receipt is a zk-STARK

Scalable Transparent ARgument of Knowledge

The prover & verifier
Use FRI and DEEP-ALI
With the Fiat-Shamir heuristic implemented using SHA-2
To prove/verify that the execution trace
Satisfies appropriate constraints

zkVM as a VM
The RISC Zero zkVM is a virtual machine with a RISC-V
instruction set architecture (ISA)

Open
Lightweight
Common compilation target

When you execute guest code, it executes instructions from
this ISA in the same way any other implementation of this ISA in
the same way any other implementation of this ISA would do

Extensions for SHA and finite fields

Advanced: Execution trace
Not just a Virtual Machine

The prover records the state of the VM as an execution trace
Each row is a clock cycle
Each column is a register

If the only thing you care about is proving/checking correct
execution, this is enough. But…

zero-knowledge

Advanced: Trace as Witness
Why is verifying the trace?

The initial state matches the claimed code
The results are as claimed
There is computational integrity: each step must be what a
RISC-V processor would do

We encode the trace algebraically
The above conditions become algebraic constraints
The encoded trace is called witness

Why get Excited???

Max Computation Size
Before Continuations: 16 million cycles

After Continuations: ~ 10 billion cycles

Continuations

Proof System

General purpose zkVMs are here
Program

Program
Inputs

VM Output

Program

Program
Inputs

zkVM
Receipt
Output
(aka journal)

Proof

RECURSION
CIRCUIT

Two STARK Circuits
RISC-V

CIRCUIT

RISC-V
CIRCUIT

RECEIPT

RECEIPT

RISC-V
CIRCUIT

RISC-V
CIRCUIT

RECEIPT

RECEIPT

RECEIPT

RECURSION
CIRCUIT

RECEIPT

RECURSION
CIRCUIT

RECEIPT

PROVER

The Emergent Pattern
EX

EC
U

TO
R

PROVER

PROVER

PROVER

PROVER

PROVER

RECEIPT

RECEIPT

RECEIPT

RECEIPT

RECEIPT

RECEIPT

RECURSION
CIRCUIT

RECURSION
CIRCUIT

RECURSION
CIRCUIT

RECEIPT RECURSION
CIRCUIT

RECEIPT

RECEIPT

RECEIPT RECURSION
CIRCUIT

RECEIPT GROTH 16
CIRCUIT

FRI FRI KZG/Groth16

Example Walkthrough
of Factors

methods/guest/src/main.rs host/src/prover.rs

methods/guest/src/main.rs Import functions for interacting
with the host environment

Read the objects from the host

Commit the public
output to the journal

host/src/prover.rs
Pick 2 numbers

Set up the Executor
Environment

This holds configuration details
that inform how the guest

environment is set up prior to guest
code execution

Obtain default prover

Prove the ELF Binary
and return a receipt

Extract output
from journal

Verify the integrity of
this receipt w. image id

Quick start
with zkVM

https://dev.risczero.com/api/zkvm/quickstart

What’s possible?

Fibonacci demo

Chess demo

What if I don’t want to run the zkVM
locally? Is there a remote option?

Bonsai

Remote proving

We provide the
infrastructure
Ideal for heavy
computations & fast
proving
Offchain computation

Bonsai

Bonsai
API key

Bonsai Architecture

What’s possible?

Bonsai Pay

Questions?
https://docs.google.com/presentatio
n/d/1XhvXo_463brY-eDMzSsh5dX
0kkISgFDbEb4rixmbHFs/edit?usp=
sharing

